825 research outputs found

    Absolute Calibration of the Auger Fluorescence Detectors

    Get PDF
    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the ombined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.Comment: 4 pages, 3 figure. Submitted to the 29th ICRC, Pune, Indi

    Optical Relative Calibration and Stability Monitoring for the Auger Fluorescence Detector

    Full text link
    The stability of the fluorescence telescopes of the Pierre Auger Observatory is monitored with the optical relative calibration setup. Optical fibers distribute light pulses to three different diffuser groups within the optical system. The total charge per pulse is measured for each pixel and compared with reference calibration measurements. This allows monitoring the short and long term stability with respect of the relative timing between pixels and the relative gain for each pixel. The designs of the LED calibration unit (LCU) and of the Xenon flash lamp used for relative calibration, are described and their capabilities to monitor the stability of the telescope performances are studied. We report the analysis of relative calibration data recorded during 2004. Fluctuations in the relative calibration constants provide a measure of the stability of the FD.Comment: 4 pp. To appear in the proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, 3-11 Aug 200

    Injury rates and injury risk factors among federal bureau of investigation new agent trainees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A one-year prospective examination of injury rates and injury risk factors was conducted in Federal Bureau of Investigation (FBI) new agent training.</p> <p>Methods</p> <p>Injury incidents were obtained from medical records and injury compensation forms. Potential injury risk factors were acquired from a lifestyle questionnaire and existing data at the FBI Academy.</p> <p>Results</p> <p>A total of 426 men and 105 women participated in the project. Thirty-five percent of men and 42% of women experienced one or more injuries during training. The injury incidence rate was 2.5 and 3.2 injuries/1,000 person-days for men and women, respectively (risk ratio (women/men) = 1.3, 95% confidence interval = 0.9-1.7). The activities most commonly associated with injuries (% of total) were defensive tactics training (58%), physical fitness training (20%), physical fitness testing (5%), and firearms training (3%). Among the men, higher injury risk was associated with older age, slower 300-meter sprint time, slower 1.5-mile run time, lower total points on the physical fitness test (PFT), lower self-rated physical activity, lower frequency of aerobic exercise, a prior upper or lower limb injury, and prior foot or knee pain that limited activity. Among the women higher injury risk was associated with slower 300-meter sprint time, slower 1.5-mile run time, lower total points on the PFT, and prior back pain that limited activity.</p> <p>Conclusion</p> <p>The results of this investigation supported those of a previous retrospective investigation emphasizing that lower fitness and self-reported pain limiting activity were associated with higher injury risk among FBI new agents.</p

    Multi-wavelength Calibration Procedure for the Pierre Auger Observatory Fluorescence Detectors

    Full text link
    We present a method to measure the relative spectral response of the Pierre Auger Observatory Fluorescence Detector. The calibration was done at wavelengths of 320, 337, 355, 380 and 405 nm using an end-to-end technique in which the response of all detector components are combined in a single measurement. A xenon flasher and notch-filters were used as the light source for the calibration device. The overall uncertainty is 5%.Comment: Submitted to Astroparticle Physics. V2: section 5.2 extended; author list change
    • …
    corecore